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Chapter 1

Introduction

An integraled circuit (also called a chip) consists of electronic devices
and their interconnections on a monolithic piece of semiconductor material,
Invented in the late 1950’s, the National Academy of Sciences heralded the
integrated circuit as the progenitor of “The Second Industrial Revolution” {1).
The digital computers and other electronic systems which have become almost
indispensable in today’s society were all made possible by the integrated
circuit.

Integrated circuits can be categorized into two functional groups—
analog and digitcl. In analog circuits, signals can vary continuously over
a specified range. In digital circuits, however, signals can assume only dis-
crete values. (Today, all digital circuits use binary logic—signals can assume
one of two possible values). Because digital circuits are capable of greater
accuracy and reliability than analog circuits, they are used extensively in
computational, data processing, communications, control and measurement
systems [2].

By putting many devices on a single chip, integration reduces the
cost of fabricating integrated circuits and increases their performance and
reliability [3]. Until the mid-1970’s, the number of electronic devices placed
on a single chip nearly doubled every year (Moore’s Law [4]). Since then, this

rate of integration has decreased slightly.

1




In today’s highly competitive semiconductor market, integrated cir-
cuit manufacturers must also be concerned with product guality. Both the
manufacturer and the customer have vested interests in knowing: 1) the prob-
ability that a given device which leaves the production facility is functioning
properly, and 2) how long a typical device can be expected to function prop-

erly while in service.

To help ensurs a fabricated chip is functioning properly, manufac-
turers rely on testing. The objectives of testing are two-fold: 1) to detect
manufacturing defects, and 2) to determine the cause of any defects detected

so that the manufacturing process can be perfected.

By shortening the interconnections between devices and reducing
the number of electrical connections which must be made between conduc-
tors, higher levels of integration have improved the reliability of integrated
circuits. As the devices on a chip become smaller and more numerous, how-
ever, they also become less accessible for testing. As a result, testing becomes
more difficult. Since more resources must be expended to solve more difficult

problems, testing also becomes more expensive.

) This thesis describes the development of a library of modular com-
puter routines for the efficient and automatic generation of input patterns
used to test digital integrated circuits. While solving only a small part of the
testing problem, efficiently generating test patterns can lower the overall cost
associated with the testing of integrated circuits. =~
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Chapter 2

An Overview Of Digital Testing

To help ensure an integrated circuit is functioning properly before
it leaves the production facility, manufacturers (and their customers) rely on
testing. The objectives of testing are two-fold: 1) to detect manufacturing

defects, and 2) to determine the cause of any defects detected so that the

manufacturing process can be perfected. ﬁc R) k—

2.1 Physical Failures and Faults

A physical failure is simply a physical defect. Physical failures can
occur at any time during the life of a device. When a physical failure keeps a
device from mecting its functional or perforinance requirements, this failure

results in a fault.

There are two basic types of faults—logical and parametric. A logical
fault transforms the function realized by a circuit into some other function (5).
A parametric fault, on the other hand, alters the magnitude of a circuit
parameter, causing a change in some factor such as switching time, current

or voltage.




2.2 Types Of Digital Testing

In order to detect faults, digital integrated circuits are subjected to
three different types of testing [5]: 1) static or DG, 2) paramelric or AC, and
3) clock-rate.

In static testing, the device is exercised by applying binary input
patterns and analyzing the steady-state outputs to determine correct func-
tional behavior. Parametric testing is used to verify the time-related behavior

of the device, as well as voltage and current levels.

Clock-rate testing is similar to static testing, except it is performed
at frequencies near the maximum device operating rate. This form of testing is
often used to test complex devices for which parametric testing is impractical,
or to test dynamic devices with stored information which must be refreshed

(e.g., dynamic metal-oxide semiconductor logic).

2.3 Approaches To Testing

There are two basic approaches to testing the logical behavior of
digital integrated circuits: 1) functional, and 2) structural. Functional testing
is perforined to verify that a digital system accomplishes a specified task.
The input patterns comprising these tests are derived manually by someone
familiar with the system, and without regard to the physical structure of the
circuit. Structural testing, on the other hand, is performed to ensure that
the hardware is free of faults. Structural tests are generated without regard

to the function realized by the circuit.

There are two basic types of functional testing—ezhaus/ive and sam-

ple. Exhaustive functional testing of an n-input combinationaf circuit involves




applying all 2" possible input combinations and comparing the outputs to the
expected values. Since the number of input patierns which must be applied
grows exponentially with the number of inputs, exhaustive functional testing

is feasible only for circuits with few inputs.

Sample functional testing involves applying only a relatively small
number of input patterns which exercise a device in its normal modes of
operation. Tests generated by this approach are, however, often limited in
their fault-detecting capabilities [6], and give no clue as to the cause of any

detected fault.

Structural testing involves using the structural details of ths circuit,
along with some assumptions about the consequences of physical hwaures, to
determine the input patterns which will distingaish between fault-free and
faully circuits. The assumptions are used to predict the effects of physical
failures on the signals in the circuit, forming fault models. These fault models
are used in conjunction with the structural details of the circuit to develop a

list of all faults for which tests must be generated.

Due to its many advantages over functional testing, structural {est-
ing has become the standard approach to developing tests for digital cireuits.
These advantages include (7): 1) a small number of tests can be generated
for those physical failures most likely to occur, 2) the effectiveness of the re-
sulting set of test patterns can be measured, 3) the cause of a fault cau be

diagnosed, and 4) test patterns can be generated algorithmically.




Chapter 3

Automatic Test Pattern Generation (ATPG)

3.1 Test Pattern Generation (TPG)

The term lest prtlern generation (TPG), ot sitply lest generation,
reiers to the process of creating the binary input pa'terns for a digital circuit
which, when applied to the network, will cause favli(s) to ecome observable
at the output(s). Faulls are observable when the o’ put(s) deviate from

expected values.

There are two main approaches to test generation: 1) probabilistic,
and 2) delerministic. Probabilistic methods ge userate input patterns pseudo-
randomly (i.c., without regard to circuit structure or function). Fault sim-
ulation is then used to determine which faults, if any, are detected by these

patterns.

Deterministic methods selest a faull from a list of faults, and at-
tempt to generate ar input paticin which will datect that fault (i.c., make
the faull observable). ‘The rezulting input patier is called a test for ihe given
fauit, Ouce a test bus benn zeneraled, fault simulutios is typically used to
determine which other Zeuite sre detecled by the sume fest. All detected
faulls are theyu deloted from the fa1l list, and the process is r-peated until

ihe fanit list is emyply.

(523
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3.2 Anutomating The TPG Process

An algorithm is a procedure for solving a problem in a finite number
of steps. Many deterministic test gencration methods have been expressed
as algorithms, and can be executed either manually or by programming a
computer to carry out the necessary steps. Using a computer to generate the

tests is called automatic test patlern generation (ATPG).

The three best-known ATPG algorithms are: 1) the D-algoxithm (8],
2) the path-oriented decision making algorithm (PODEM) {8}, and 3) the
fanout-oriented algorithm (FAN) [10]. All three use the single stuck-at fault
model and the deterministic path sensitization approach to derive tests for
combinational digital circuiis described at the gate level (i.e., described by a

logic diagram).

3.3 The Stuck-At Fault Model

The oldest, simplest, and most widely used faul! model is the stuck-
ai model. Under this model, the consequences of physical failures are modeled

as node signals permanently at logic 0 (stuck-at-0) or logic 1 (stuck-at-I1).

Experience in industry and various ‘<udizs have shown that the
stuck-at fault model is still viable for today’s echaologies [11,12]. For ex-
ample, in bipolar transistor-transistor logiv (TTL), an open connection to
the input of a gate can be modeled by a stuck-at-1 fault at that input. Shorts
between conductors in TTL technology form wired-AND functions, and many
of these physical defects can be detected by the set of tests generated for all
stuck-at faults in the network [11].

Unfortunately, fewer physical defects in devices manufactured in




metal-oxide semiconductor (MOS) technology can be medeled directly by
stuck-at faults. However, many of these physical defects can be detected by

a set of tests generated for all stuck-at faults in the network [12].

3.4 The Single Fault Assumption

In a manufacturing environment, a single chip may have many de-
fects. Thus it seems reasonable that multiple stuck-at faults should be con-
sidered. ‘This greatly complicates things, however, since a circuit with n
nodes has only 2n possible single stuck-at faults (a stuck-at-0 and stuck-at-1
for cach node), but has 3" — 1 possible multiple stuck-at faults (3" possible

combinations, one of which is a fault-free circuit).

Fortunately, however, many studies have shown that test sets which
detect a high percentage of single stuck-at faults also detect most of the
possible multiple stuck-at faults {5,13,14]. Thus the single fault assumption

is reasonable.

3.5 Path Sensitization

The path sensitization approach to test generation involves: 1) fault
ezcitalion and 2) faull propagation. The goal of fault excitation is to put
the signal value opposite the fault value on the faulted line (i.c., a 1 for a
stuck-at-0 fault, and a 0 for a stuck-at-1 fault). This creates a fault signal at
the fault site which can then be propagated to a primary output. (The fault
signal values used by Roth in the D-algorithm have becon.e accepted—a “D"
represents a 1 in the fault-free circuit and a 0 in the faulty circuit, and a “D"

represents a 0 in the fault-free circuit and a 1 in the faulty circuit).

Fault observation involves propagating fault signal(s) to primary




output(s) where they can be observed. (The path created from the fault site

to the primary output where the fault is observed is called a sensitized path).

3.6 Combinational Versus Sequential Circuits

There are two basic types of digital circuits—combinationeland se-
quential. The outputs of combinational circuits depend only on the values of
their current inputs, while the outputs of sequential circuits depend on their

past and present input values.

There are many algorithms which generate tests for combinational
circuits. Test generation for sequential circuits, however, is greatly compli-
cated by their memory elements and timing considerations. As a result, the

test generation problem for sequential circuits remains largely unsolved.

To avoid the sequential test generation problem, many manufactur-
ers have implemented their sequential circuits using various scan-path fech-
nigues. By placing combinational circuits between rows of latches which are
accessible for testing, these techniques reduce the problem of test generation

for sequential circuits to (nearly) one for combinational circuits {15,16,17).

It is even possible for physical failures to transform combinational
circuits into sequential ones. For example, a short between conductors can
create a feedback path, and an open pull-up transistor in a complementary
metal-oxide semiconductor (CMOS) gate will fail to drive the output when
it should change. These sequential faults require a series of input patterns
to detect them, thus they may or may not be detected by a set of tests for

combinational stuck-at faults.




Chapter 4

The Three Best-Known ATPG Algorithms

As mentioned previously, the three best-known ATPG algorithms
are the D-algorithm (8], PODEM (9] and FAN {10]. All three of these algo-

rithms use a deterministic path sensitization approach to test generation.

4.1 The D-Algorithm

The D-algorithm was the first “complete” algorithm for test pattern
generation (i.e., given enough time, it will generate a test for a fault if a
test exists). To be “complete”, & test pattern generation algorithm must be

capable of sensitizing multiple paths simultaneously.

The D-algorithm is based on the “calculus of D-cubes”, where lines

in the circuit can take on any one of five possible values—0, 1, X (indetermi-

nate), D, or D.

The singular cover of a gate describes the relationship between the
inputs and the output. Each row of the singular cover is called a singular
cube. The primitive D-cubes of a gate (also known as propagation D-cubes)
describe the minimum requirements to propagate a fault signal through a
gate, and are formed by D-intersecting the cubes in the singular cover which
have different output values. The primitive D.cubes of failure (PDCF's) are
formed by D-intersecting the singular cover of the fault-free gate with the

10
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singular cover of the faulty gate.

The D-algorithm attempts to find a test for a fault by: 1) forming
a test cube with a position for the logical value of each node in the circuit,
and initializing all values to X, 2) choosing a PDCF and intersecting the
test cube with this PDCF, 3) moving forward through the circuit toward the
primary outputs, intersecting the test cube with the propagation D-cube for
each gate encountered, and 4) when a primary output is reached, moving
backward through the circuit toward the primary inputs, justifying all nodes
left unjustified by the preceeding D-drive operation. This last step is called
the consistency ope ation, and is accomplished by intersecting the test cube

with the singular cubes of gates with unjustified outputs.

If none of the propagation D-cubes for a gate are consistent with
the existing test cube entries during the D-drive operation, the D-algorithm
must backirack to the last point where a choice existed, make an alternate
selection, and try to proceed again, Conflicts occuring during the consistency

operation are resolved in the same manner.

Backtracking may have to be performed repeatediy until all possible
choices have been exhausted. After all possibilities have been tried without
success, the D-algorithm determines that no test exists for the fault (i.c., that

the fault is undetectable or redundant).

4.2 The PODEM Algorithm

The PODEM algorithm allows assignments to be made only to pri-
mary inputs. The effects of these assignments are then propagated to the
internal nodes by an implicalion process, which is basically a logic simulation

routine. By examining all possible primary input combinations implicitly
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but exhaustively, the PODEM algorithm is also a “complete” test paitern

generation algorithm.,

PODEM attempts to generate a test for a given fault by repeatedly:
1) choosing an objective, and 2) determining the primary input assignments
necessary to achieve that objective. This process continues until a fault signal
is propagated to a primary output, or until the algorithm determines that no

test exists.,

The two types of objectives in PODEM are: 1) fault ezeitation,
and 2) fault propagation. Fault excitation involves finding the primary input
assignments necessary to set the value of the faulted line to the opposite of the
fault value (i.c., a 1 for a stuck-at-0 fault, and a 0 for a stuck-at-1 fault). Fault
propagation is the process of determining the input assignments necessary to

propagate a fault signal to a primary output where it can be observed.

PODEM uses a simple but effective backiracing procedure to de-
termine the input values necessary to achieve an objective. This procedure
uses relative measures of the controllabilities of lines as inputs to a heuristic
routine which determines which path to take when alternatives exist. (The
controllability of a line denotes the relative ease with which the line can be

set to a logical value.)

When determining the input values necessary to achieve an objective
value at the output of a gate during the backirace operation, two situations
are possible: 1) the objective can be achieved by setting any of the inputs to
a controlling state (i.e., a logic 0 for any input of an AND or NAND gate, or
a logic 1 for any input to an OR or NOR gate), or 2) the objective can only
be achieved by setting all of the inputs to non-controlling states (i.e., logic

1's for all inputs to AND or NAND gate, or logic 0’s for all inputs to an OR
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or NOR gate).

In the first case, PODEM seis the input which is easiest to control
(i.e., has the highest controllability) to the controlling value. This strategy

does not guarantee success, but when it is successful it saves a lot of time.

PODEM selects the input which is hardest to control as the first
input to be set to a non-controlling value in the second case. This strategy
saves time in the long run by allowing the carliest possible deternination that

an objective cannot be achieved.

The backirace operation proceeds gate by gate towards the primary
inputs until an input is finally reached. The value determined by the back-
trace routine is then assigned to the input, and the implication operation is
performed to propagate the effects to the internal nodes. If a fault signal
reaches a primary output during the implication process, a test has been gen-
erated. Otherwise, a check is made to sec if the current objective has been
achieved. If it has, then a new objective is chosen. If the current objective

has not been achisved, the backtrace operation is repeated.

During the fault propagation phase, PODEM selects as its next
objective to propagate a fault signal through a gate with an output which is
both: 1) closest to a primary output, and 2) from which it is still possible
to sensitize a path to a primary output. PODEM uses a simple distance
measure of observability for the first requirement, and an “X_path_check”
routine for the second. The X_path_check routine searches for a path from
the output of a gate to a primary output along which all values have not y2t
been determined (i.e., along which all logic values are “X™).

Each assignment made to the primary inputs, called decisions, are

stored in a last-in first-out (LIFO) stack. Associated with each decision is a
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“retry” flag which is set when the originaily assigned value is reversed during

a backtrack operation.

When a conflict is detected by 1) attempting to reassign a value
to a primary input opposite its current value, or 2) when the X_path.check
routine fails for all gates with indeterminate outputs and fault signal(s) on
their inputs (i.c., all gates on the D-frontier), PODEM must exccute the
backtrack operation.

The PODEM backtrack operation removes decisions from the deci-
sion stack until a decision which has not yet been retried is found. The values
of any previously retried decisions i.e., decisions with their retry flags set)
are returned to “X". The value of the first decision removed from the stack
which has not been retried, however, is reversed, its retry flag is set, and it
is added to the top of the stack. The implication routine then propagates
the effects of all decisions on the decision stack to the internal nodes, and

processing continues.

If the decision stack becomes empty during the backtrack opera-
tion (i.c., no decision is found which has not previously been retried), then

PODEM determines that no test is possible for the fault.

4.3 The FAN Algorithm

The FAN algorithm is a refinement of the PODEM algorithm, in-
cluding more effective deterministic and heuristic measures. As its name

implies, FAN pays special attention to the fanout points in a logic circuit.

Fan allows assignments to: 1) head lines, and 2) fanoul stems. A

head line is a free line which feeds a bound line. A bound line is reachable from
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some fanout point. A line which is not a bound line is a freeline. Assignments

are kept in a LIFO stack just as they are in PODEM.

Like PODEM, FAN uses a backtracing procedure to satisfy objec-
tives. However, instead of backtracing along a single path, FAN backtraces
along multiple paths simultanecously. As it moves backward through the cir-
cuit towards the primary inputs, the FAN backirace routine routine resolves
conflicting requirements at fanout points, and stops at head lines. (The back-
trace operation can be stopped at head lines since the primary input assign-

ments necessary to justify head line assignments can always be found without

backtracking.)

When conflicting requirements occur during the backtrace operation
at fanout stems which are not reachable from the fault site, FAN uses a
weighting scheme to determine which binary value (0 or 1) to assign to this
node. (Since binary values are assigned, these points must not be reachable
from the fault site). Resolving inconsistencics as early as possible is one of

the keys to FAN’s more efficient operation.

As in PODEM, if the dacision stack becomes empty during the back-

track operation, the FAN algorithm determines that no test is possible.

4.4 Comparing The Three Algorithms

In order to compare the three algorithms, it is necessary to put the

TPG problem in perspective.
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4.4.1 TPG As A Scarch Problem

TPG is essentially a search procedure-—a search for the primary
input assignments which will make a fault observable if it exists. Search
procedures can be categorized as blind or guided. In » blind search, the order
in which alternatives are explored is unaffected by the goul criteria or the
nature of the unexplored portion of the graph. Examples of blind searches

are depth-first and breadth-first (18).

Guided searches, on the other hand, use rules of thumb garnered
from a working knowledge of the problem domain and the nature of the goal
to help direct the search in more promising directions—hcuristics. Guided
scarches are usually more efficient than blind searches, but may result in the
same exhaustive enumeration in the worst case. Examples of guided scarches

are hill-climbing and best-first [18].

4.4.2 TPG Complexity

The TPG process for a single stuck-at fault in a general combina-
tional network has been shown to be NP-complete {20}, which puts TPG in
the same complexity category as the well-known traveling salesman and knap-
sack problems. All known algorithms for NP-complete problems require an
czponential amount of time in the worst case. (Exponential-time algorithms
use impractically large amounts of computation time even for relatively small

}roblem sizes).

While no one has been able to prove that NP-complete problems
can be solved in “reasonable” amounts of time, guided search techniques are

often able to do just that.
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4.4.3 The D-Algorithm As A Search Procedure

The D-algorithm is essentially a blind search, using only basic infor-
mation about the configuration of the circuit and the logical functions of the

clements to generate tests.

The D-algorithm also suffers from a large search space—all the nodes
in the circuit. Since all known algorithms for NP-complete problems like TPG
require an exponential amount of time in the worst case, the upper bound
for the time required by the D-algorithm is relatively high. To make matters
worse, this search space contains nodes which are interrclated—assigning a
value to one node often conflicts with the assignments of other nodes. Prop-
agating fault signals to primary outputs before attempting to justify assign-
ments made along the way delays the recognition of these conflicts, and often

results in wasted time and effort.

Realizing that the original D-algorithm is rather inefficient, two ma-
jor improvements were made in the version implemented for this thesis. These
modifications are conceptually the same as those made by Roth in his im-
proved version of the D-algorithm [19): 1) forward and backward implication
operations were added to carry the uniquely implied effects of a decision
throughout the circuit immediately following the decision, and 2) the ob-
servabilitics of lines in the circuil were used o decide which faull signal to
propagate next. Performing the implication operations allow conflicts to be
detected earlier, reducing the time needed to generate tests by reducing the
nt;mbcr of backtracks. Always propagating fault signals closest to the primary

outputs often results in generating tests in less time as well.
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4,44 The PODEM Algorithm As A Search Procedure

The search space for the PODEM algorithm consists of a sieall sub-
get of all the nodes in a circuit—the primary inputs. This means that the
upper bound on the time required by PODEM is much less than that of the
D-algorithm. Even more important is the fact that the nodes in this search
space are independent—assigning a value to one node can never conflict with

assignments at other nodes.

PODEM is also a guided search procedure, using heuristics to de-
termine which path to take during the backirace operation, and which gate

to propagate a fault signal through during the fault propagation phase.

4.4.5 The FAN Algorithin As A Scarch Procedure

As mentioned previously, the FAN algorithm is a refinement of the
PODEM algorithm which includes more effective deterministic and heuristic
measurcs. The search space for FAN consists of another small subset of all
nodes in the circuit—head lines and fanout points. Thus the upper bound on
the time required by FAN is also much lower than that of the D-algorithm.
Fanout stems which are not reachable from the fault site are included in the
search space in an cffort to quickly resolve conflicting requirements at these

points.

FAN also includes a2 number of deterministic measures which help to
identify conflicts at an earlier stage, thus reducing the total time and number

of backtracks required.




Chapter 5

Implementation Details

5.1 Library Overview

The functions used tu implement the D-algorithm, PODEM and
FAN were coded in the C programming language [21]. These implementations
contain about 13,000 lines of C code in over 150 functions in 60 different files.
The files are compiled separately, then linked together to form the programs

which implement the above algorithms.

As shown in Figure 5.1, all implementations share the same data
input routines as well as the forward implication operation. PODEM and
FAN share the same measures of controllability and observability, as well as
the X_path_check function discussed previously, D-algorithm and FAN share

the backward implication and justification operations.

5.2 The UNIX Programming Environment

All of the functions used to implement the D-algorithm, PODEM
and FAN were developed in a UNIX! operating system environment. Many
of the attributes of C and TJNIX made it possible to develop the library in a

relatively short period of time, and with little prior knowledge of the language

1UNIX is a Trademark of Bell Laboratories.
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D-Algorithm
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(Data Input)  Backward

Forward Implication
Implication _ Justification
Controllability/
Observability e
PODEM |— s Alucs FAN
X _Path_Check

Figure 5.1: Routines Shared By The Three Best-Known ATPG Algorithms,

or of the operating system. They include:

¢ The functional mcdularity of the C programming language.
o Separate compilation of mulliple source files.

o The UNIX make utility.

e A powerful C debugger dbx.

¢ Two other UNIX utifities lex and yace.

C programs consist of one or more functicns in one or more files. Ifa
C program consists of two or more files, these files axe compiled independently,
then connected together to form a single executable program by the linker.
Thus, by its very nature, C supports modular programming «nd libsaries of

functions.

One UNIX ulility which proved invaluable was the make utility.
Make is an automatic program compilation utility which help maintain large

programs which have been broken up into several files. When executed, make
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checks to see i any of the files needed to create the target executable file have
beer modified since the last compilation. If so, these files (and/or any files
which depend on them) are automatically recompiled and linked together to
form an up-to-date version of the program. This action saves programmers

cunsiderable time and effort in a software development environment.

Any large software development project also requires a powerful de-
bugger like dbx. For example, since C has no automatic array bounds check-
ing, overwriting the bounds of an array can (and did) cause baffling run-time
erxors which are almost impossible to diagnase in a large program without a

sophisticated debugger.

Two UNIX utilities callad lex (lexical analyzer generator) and yace
(yet another compiler-compiler) made it very easy to input data from sep-
arate data files. These utilities free programmers from much of the coding
required to handle data entry, allowing them to concentrate their efforts on

their particular application.

5.3 Program Execution

All files are compiled and linked together to form and exccutable
program called “dalg”. The file names “podem” and “fan” are then linked to
the “dalg” file. When the user invokes the program with one of these names,
the first arguement on the command line determines which implementation
is executed (i.e., “dalg” for the D-algorithm, “podem” for PODEM, or “fan”
for the implementation of FAN).

The second arguemeat ~a the command line is the name of the input
file containing the circuit description and the list of target faults. For example,

typing “dalg our.data” will execute the modified version of the D-algorithm
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using the information in the file “our.data”.

Run-time statistics (test generaticn time, number of backtracks,
etc.) arc automatically appended to the file “dalg.D" (for the D-algorithm),
“podem.P” (for PODEM) or “fan.F" (for FAN) in the subdirectory “Data”.
Flags in the file “globals.h” determine whether the test patterns are printed
to the screen, to a separate file, or both. When the flag indicating data is to
be written to a separate file is set, the test patterns generated are written toa
unique file in a subdirectory called “Fault Info". If test generation for a given
fault is discontinued when a preset backtrack limit is exceeded (i.c., the fault
is “aborted”) or the fault is determined to be redundant, the appropriate

message is also written to this file.

5.4 Data Structures

The implementations of D-algorithm, PODEM and FAN all share
common data structures. The internal representation of the circuit is line-
oriented and consists of collections of basic data structure elements joined by

pointer variables to form a linear linked list.

Figure 5.2 shows a very simple circuit and its internal representation.
The information about each line is contained in two basic structures linked
by pointers: 1) the module structure, and 2) the gate_info structure. (In
Figure 5.2(b), the module structures are the large boxes across the top labeled
“module #n", and the gate.info structures are directly under the module
structures). Each module structure contains: 1) the line number, 2) the code
for the logical value of the line (0, 1, X, D or D), 3) the controllability and
observability values, 4) various flags used to speed up execution, 5) a pointer

to the associated gate_info structure, and 6) a pointer to the next module in
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the list.

Each gate.info structure contains: 1) a code for the type of gate
the line originates from, 2) a pointer to a linked list of predecessors (i.c., the
inputs to the gate the line originates from), 3) a pointer to a linked list of
successors (i.c., either the output of the gate the line is an input to, or, if the
line is a fanout stem, the line numbers of its branches), and 4) a pointer to a

linked list of unique sensitizations used by the FAN algorithm.

It was not clear at the beginning what information needed to be
stored for efficient implementations—the data structures evolved as the de-
velopment progressed and the test circuits grew in size and complexity. The
extensive use of pointers and flags to store frequently needed information
helped increase the efficiencies of the implementations by eliminating dupli-
cation of effort. (Pointers and flags can be set once during preprocessing, or
at the start of the scarch for a test for a new fault, and functions needing this

information later have it immediately available).

For example, elements in the linked lists of predecessors and suc-
cessors must have pointers to the lines they reference. Supplying only the
line numbers of successors or predecessors would result in slow and repeated
searching in order to access their information. Also, many functions need to
know if a given line is a primary output, and setting a flag in the module

coritaining the information about the line can answer this question quickly.

5.5 Constructing The Internal Representation Of The
Circuit

During preprocessing, information from the input file is used to build

an internal representation of the circuit. A program created by the lex utility
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Figure 5.2: An Example Circuit And Its Internal Representation.
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(a) Example Circuit.

/* Example Circuit */

12 and 5; /* gates, inputs and outputs */
3 4 and 6;
56o0rT;
$ /* end of section */
po T; /¥ primary output list */
$
1 sa0; 6 sal; [* fault list */
8 /* end of input */
(b) Input File For (a).

Figure 5.3: Example Circuit and the Corresponding Input File.

feeds information from the input file to a yacc-created program in recognized
character sequences called tokens. The program created by the yacc utiiity
compares the order in which these tokens are received to predefined rules for
input file organization. When one of these rules is matched, a user-defined
action is invoked. These actions construct the linked list of data structures
which constitutes the internal representation of the circuit. Figure 5.3 shows

an example circuit and the corresponding .nput file.

The types of gates recognized include ANDs, ORs, NANDs, NORg,
EXCLUSIVE-ORs and INVERTERs. (The INVERTER is modeled internally
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as a single-input NAND gate). Line numbers must be positive integers, and
the line numbers of gate outputs must be greater than any of the line numbers

of their inputs. This aids in checking the input file for errors resulting in
feedback,

Aiter all gates and their inputs and outputs have been specified, the
primary outputs are listed. This information is needed to identify primary
outputs which are fanout branches, and also helps in checking the input file
for errors. (Every line in the input file must be a gate input, be identified as

a primary output, or both).

Following the list of primazry cutputs is the list of target faults.
Target faults can be specified explicitly, or all possible faults can be specified
by entering the word “all”., When target faults are specified explicitly, this

information is stored in a linked list.

It was decided carly on not to burden the user with specifying each
and every fanout branch in the circuit. Data structures for fanout branches
are generated automatically by a special routine after the basic circuit rep-
resentation has been constructed. Unique line numbers are assigned to the
fanout branches by: 1) multiplying the line number of the stem by 100, 2)
adding an integer representing the branch number, and 3) making the result
negative. (The value 100 allows for a maximum of 99 fanout branches per

stem).

Relieving the user of the requirement to specify all fanout branches
has one drawback—specifying faults on fanout stems requires a special format
and extra data handling. Figure 5.4 shows how a fault on a fanout branch is

specified.

The routine which adds the data structures for fanout branches also
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:3_10_ s\aO

(a) Faulted Fanout Branch,

+..310520 17; ...

(b) Fault Specification For (a).

Figure 5.4: Fault Specification For A Faulted Fanout Branch.

updates the list of primary outputs and the list of target faults after line

numbers have been assigned to the fanout iines.

5.6 Calculating Controllabilities And Observabilities

As mentioned previously, both PODEM and FAN use measures of
controllability and observability as inputs {o heuristic routines which decide
which path to take when alternatives exist. Two measures of controllability
and observability were implemented [22): 1) fan/distance and 2) CAMELOT,

which stands for computer-aided measure for logic testing.

5.6.1 The Fan/Distance Method

Using the fan/distance method, the controllability of a line is cal-

culated by: 1) assigning each node an intrinsic controllability equal to its
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fanout minus one, and 2) working from primary inputs to outputs, adding
the sum of the input controllabilities to the intrinsic controllability values of
gate output lines. Using this method, lines with lower controllability values

are casier to control.

The observability of each line is calculated by: 1) assigning a zero
value to primary outputs, and 2) working backwards through the circuit from
primary outpuls to inputs, gate input lines are assigned observability values
equal to the output observabilities plus one. Using this method, lines with

lower observability values arc casier to observe.

5.6.2 The CAMELOT Method

The CAMELOT method calculates the controllabilities of lines by:
1) assigning the value one to primary inputs, and 2) working from the primary
inputs to the outputs, the controllabilities of gate outputs are calculated as
follows:
Ny = total number of possible input patterns
producing a zero at the output
N, = total number of ~ossible input patterns
producing a one at the output

CTF controllability transfer function

1 —(No — Ny)/(No + N,)

SIC = sum of the input controllabilities

ITNI total number of gate inputs

CGO

controllability of the gate output
= CTF.(SIC/TNI)
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Using the CAMELOT method, controllability values are xeal num-

bers between zero and one, and lines with higher values are casier to control.

The observability of each line is calculated as follows: 1) the observ-

abilities of the primary outputs are assigned the value one, and 2) working

from the primary outputs back towards the inputs, the observabilities of gate

inputs are calculated:

Np'—"-

Np

OTF

il

OGO

scor

TNOI

0GI

At fanout points,
OB;
oS

the total number of ways to propagate
a fault signal on this line

the total number of ways to block propagation
of a fault signal on the line
observability transfer function
Np/(Np + Np)

observability of the gate output

sum of the controllabilities

of the other gate inputs

total number of other inputs
observability of the gate input
OTF.0GO-(ScoI/TNOI)

= observability of fanout branch “"

= observability of the stem

- 1~ [a-om)

i=1

The CAMELOT observability values are also real numbers between

zero and one, and lines with higher values are easier to observe.
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The fan/distance methed was implemented first, so the CAMELOT
values were made compatible by rounding their inverses to the nearest integer.
This worked well for the controllability values, but the converted observability
values began to exceed the maximum value which could be represented by
the 32-bit signed integer format of our computer. The problem was solved
by converting the six most significant bits of the format (after the sign bit)
to an exponent. This alleviated the overflow problem, and still allowed for

dircct comparison of the magnitudes of observability values.

5.6.3 Implementing The Calculations

Controllabilities and observabilities are computed using ths same
gencral method. First, the values of the primary inputs (for controllability)
or the primary outputs (for observability) are set to one, and the values
for all other lines are initialized to minus one, irdicating they have not yet
been computed. All final (non-negative) values are then used to calculate
the values for their successors (for controllability) or their predccessors (for
observability) during repeated passes through the internal representation of

the circuit.

Passes continue to he made through the data structures until: 1) all
values have been determined (i.e., all values are positive), or 2) a pass through
the data structures fails to determine at least one previously undetermined

value. In the Jatter case, an error is reported, and processing stops.

5.7 Determining Unique Sensitizations

The unique sensilizations of a line are the path sensitization values

common to all possible paths from the line to a primary output. As with the
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calculations of line observabilities, the unique sensitizations of all lines are
determined by the unique sensitizations of their successors during repeated

passes through the internal representation of the circuit.

On the first pass through the data structures, the pointers to the
linked lists of unique sensitizations are set to NULL (i.e., zero or none) for
the primary outputs, and to a predetermined value which signifies they have
not yet been determined for all other lines. (The address of the module data

structure itself was used).

The unique sensitizations of a line are determined once the unique
sensitizations of its successor(s) have been found. If the line is not a fanout
stem, then it has only one successor. Its unique sensitizations can be deter-
mined using: 1) the type of gate the line is an input to, 2) the line numbers
of the other inputs o that same gate, and 3) the unique sensitizations of its

successor (i.c., the unique sensitizations of the gate output line).

If, on the other hand, the line is a fanout stem, then its unique sen-
sitizations are the sensitizations common to the sets of unique sensitizations

of its fanout branches.

As with the controllability and observability calculations, passes
continue to be made through the data siructures until: 1) all unique sen-
sitizations have been determined, or 2) a pass through the data structures
fails to determine the unique sensitizations for at least one new line. Again,

in the latter case, an error is reported and processing stops.

5.8 Keeping Track Of Decisions

All three algorithms use a LIFO stack to keep track of decisions and

ensure all possible choices arec examined, either explicitly or implicitly. When
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a new decision is made, it is pushed onto the top of the stack.

Along with the decision itself, the implemented version of the D-
algorithm (which includes forward and backward implication operations) also
saves: 1) the PDCF (for the first decision) or the propagation D-cube (for
subsequent decisions) sclected, 2) the backward implications, and 3) the re-
sulting D-frontier. This information is used to restore the state of the circuit

when a backtirack occurs.

If the implications of a new decision do not conflict with previous
decisions and their effects, the FAN algorithm saves this decision and: 1) its
backward implications, 2) any unique sensitization values used, and 3) the

backward implications of any unique sensitizations used.

Both the D-algorithm and FAN also have a second decision stack
for the justification operation. Along with the singular cubes selected, the
effects of backward implications must again be stored. (Using forward and
backward implication in the justification operation also reduces the amount

of time required to generate a test).

The PODEM algorithm is the only one of the three which saves only

the decisions on its decision stack.

5.9 The Backtrack Mechanism

When a conflict occurs in any of the three algorithms, they must
backtrack to the last decision which inveolved making a choice and try another
alternative. In order to accomplish this action, the circuit must be returned
to the state which existed when the choice was made. The D-algorithm and
FAN save the state of the circuit, while PODEM is able to propagate the

effects of the previous decisions to restore the state.
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The section which describes how decisions are recorded also da-
scribes what infornation is saved by the D-algorithm and FAN in order to

restore the circuit state,

5.10 Implementation Of The Modified D-Algorithm

As mentioned previously, two improvements to the original D-algorithm
were incorporated into the version implemented: 1) forward and backward
implication operations following each decision, and 2) the observabilities of

lines were used to decide which faull signal to propagate next.

The implementation of the D-algorithm includes the {ollowing major

functions:

o d.alg()

o make.pdef()

¢ forward_implication()
o backward.implication()
¢ d.drive()

¢ justification()

e singular_cube()

5.10.1 The d._alg() Function

The d_alg() function orchestrates the operations of the other func-
tions. It also handles the decision stack and backtrack operations discussed

previously.
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5.10.2 The make_pdci() Function

The make.pdcf() function generate: a linked list of all primary D-
cubes of failure (PDCFs) using: 1) the type of gate, 2) the number of gate
inputs, and 3) the type of fault (stuck-at-0 or stuck-at-1) at the output of the
gate. Each list element contains the coded values for the input(s) snd output

corresponding to a single PDCTE. (Each output is either D or ).

5.10.3 The forward_implication() Function

The forwardimplication() function, used by all three algorithms,
transmits the logical effects of changing values through the circuit in the
forward direction (i.c., towards the primary outputs). Effects are propagated

when the output value of a gate can be determined by its input values.

When a decision is made, the value of the decision node is changed,
and the decision is examined for any forward implications. The successor(s)
of the decision node are automatically added to the beginning of a circular
buffer of lines to be evaluated. The forward implications are determined
by successively: 1) removing a line from the buffer, 2) determining its new
value from the values of its predecessors, and 3) comparing this new value to
the current value. If the current value is X, the new value is assigned, and
the successor(s) of the line are added to the end of the buffer. If the new
value is the same as the old value, no further action is taken, and processing
continues with the next line in the buffer. (If the current output was anything
but X, and the new value is not the same as the old value, a conflict occurs.)
Evaluations continue to be carried out until: 1) the buffer becomes empty, or

2) a conflict occurs.

A circular buffer is used instead of a linked list to avoid the overhead
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associated with linked list operations:

o Creating new list elements (dynamic memory allocation)
¢ Adding and deleting elements from a list

e Returning unused elements (i.e., memory) to the system

The size of the buffer may be varied, and may well become a compromise
batween the desired speed of execution and the size of the available memory.
A linked list is used tc handle any overflow from the buffer. As space becomes

availablein the buffer, information ir the overflow list is moved into the buffer.

If a conflict occurs, the forward_implication() function is called a
sccond time to restore the state of the circuil to its condition before the
last decision was made. This is accomplished by changing the decision node
back to X, and propagating the effects until lines tagged as having values

determined by previous decisions are encountered.

Each time a fault signal is propagated, the linked list containing the
lines in the D-frontier is updated. This list is also updated each time a value
which allowed the propagation of a fault signal is changed back to X following

a conflict.

5.10.4 The backward_implication() Function

The backward implication() function, also used by the FAN algo-
rithm, transmits uniquely implied logic values backward through the circuit
towards the primary inputs. Values are uniquely implied when there is only

one set of input values which results in the present output value.

Each time a decision is made, it is examined for backward impli-

cations before the forward.implication() function is performed. (PODEM
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makes assignments only to primary inputs, thus there can be no backward
implications.) If a predecessor value is uniquely implied, its value is changed,
and this change is recorded in one of two linked lists. If the predecessor is
not a fanout node, the change is recorded in the “backward impact” list. If
the predecessor node is a fanout node, the change is recorded in a linked
list of “forward impacts.” (Backward implication is always performed before
forward implication, and the calling ~outine must also send those lines in the

“forward impact” list to the forward implication routine.)

These lists, containing the results of the backward implication pro-
cess, are used later to restore the state of the circuit during a backtrack. (Sce

the section describing the backtrack operation).

5.10.5 The d.drive() Function

The d.drive() function automatically generates the propagation D-
cubes for all gate types except EXCLUSIVE-OR gates by assigning the binary
values (0 or 1) to input lines which have not yet not yet been determined
(i.c., are still X) in order to propagate fault signals toward primary out-
puts. The advance.by X() function generates the propagation D-cubes for
EXCLUSIVE-OR gates.

The d.drive() function continues to propagate fault signals toward
primary outputs until: 1) a fault signal arrives at an output, or 2) all possible
ways to propagate fault signals have been tried without success. In the latter

case, the D-algorithm determines that no test exists for the fault.
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5.1C ® The justification() Function

The justification() function, also used by the FAN algorithm, uses
information supplied by the singular_cube() function to find non-conflicting
assignments which justify all unjustified lines. Processing takes place in a
doubly linked list originally containing a list of all unjustified lines. This list
is expanded to include the line numbers of all predecessors of these unjustified

lines as well.

After a singular cube is selected and the values of affected lines
are changed, the forward and backward implications of these assignments
arc examined. If conflicts occur, new singular cubes are chosen, and their
implications are propagated forward and backward through the circuit. This
process continues until: 1) all lines are justified, or 2) all possible combinations
of singular cubes have been tried without success. In the latter case, the
assignments resulting from the justification() routine are reversed, and the

calling routine is informed of the failure.

5.10.7 The singular_cube() Function

The singular_cube() function generates the singular cubes for all
gates on an as needed basis. To determine the next singular cube to be
generated and returned, it needs to know: 1) the gate type, 2) the number of

inputs, and 3) the number assigned to the last singular cube generated.

5.11 Implementation Of The PODEM Algorithm

The implementation of the PODEM algorithm includes the following

major functions:
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¢ podem()
¢ forward_implication()
¢ initial_objective()

¢ backtrace()

5.11.1 The podem() Function

The podem() function orchestrates the operations of the other func-
tions. It also handles the decision stack and backirack operations discussed

previously.

5.11.2 The forward.implication() Function

The forwardimplication() function, shared by all three implemen-

tations, is discussed in the preceeding section on the modified D-algorithm.

5.11.3 The initial_objective() Function

The initial_objective() function is used to generate a fault signal at
a fault site and to propagate fault signals to primary outputs. A fault signal
is established by achieving the objsctive of setting the value of the faulted
line to the opposite of the fault value (i.e., a 0 for a line with a stuck-at-1
fault, and a 1 for a line with a stuck-at-0 fault). This objective is passed to

the backtrace routine.

When propagating fault signals toward the primary outputs, the
objective becomes propagating a fault signal through the gate on the D-
frontier with an output that has both: 1) the highest observability, and 2) an
X_path to a primary output. This objective is also passed to the backtrace
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routine.

5.11.4 The backtrace() Function

The backtrace() routine uses the heuristics discussed previously to
move backward through the circuit in an effort to determine a primary input

assignment which will achieve the initial objective.

5.12 Implementation Of The FAN Algorithm

The implementation of the FAN algorithm includes the following

major functions:

o fan()

e forward_implication()
¢ backward_implication(}
o final_objective()

e fan_backirace()

¢ unique_sensitization()

e justification()

5.12.1 The fan() Function

The fan() function orchestrates the operations of the other func-
tions. It also handles the decision stack and backtirack operations discussed

previously.
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5.12.2 The forward_implication() Function

The forward_implication() function, common to all three implemen-

tations, is discussed in the preceeding section on the modified D-algorithm.

5.12.3 The backward_implication() Function

The backward implication() operation is shared by the implementa-
tions of the D-algorithm and FAN, and is discussed in the preceeding section

on the modified D-algorithm.

5.12.4 The final_objective() Function

The final_objective() function: 1) assigns the appropriate binary
value to the licad line or fanout point objective returned by the det_final.obj()
routine, and 2) returns a pointer to the module data structure containing
the information about the objective line to the calling fan() function. The
det final_obj() operation uses the status of the backtrace flag and the sets of
head line and fanout point objectives, formed by the fan_backirace() function,

to determine the final objective.

5.12.5 The fan_backtrace() Function

The fan_backtrace() function moves backward through the circuit
along multiple paths in o breadth-first manner from the initial objective
lines towards the primary inputs, resolving conflicting requirements at fanout
points which are not reachable from the fault site, and stopping at head lines.
(Not being reachable from the fault site guarantees that a binary value can

be assigned to the fanout stem).
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To implement the multiple backtrace in a breadth-first manner, ob-
jctives are removed from the head of a linked list of current objectives, and,
if they are not head lines or fanout branches, heuristic rules (10] are used to
determine the next objectives. These next objectives are then added to the
tail of the list of current objectives, but only if a search of the list verifies

they are not already included.

5.12.6 The unique_sensitization() Function

The unique_sensitization() function is executed when there is only a

single gate in the D-frontier which has an X_path to a primary cutput.

The required assignments, determined during preprocessing, are made
in an cffort to reduce the time needed to generate a test. (See the earlier sec-

tion on how these unique sensitizations are determined).

5.12.7 The justification() Function

After a fault signal has been propagated to a primary output, the
justification() function is used to justify the assignments at head lines and
fanout points. The justification() function, shared by the D-algorithm and
FAN, is discussed in the earlier section on the modified D-algorithm.




Chapter 6

Results

All three implementations were used to generate tests for a standard
set of circuits known as the “ISCAS circuits” [23]. The characteristics of these

circuits [24] ate shown in Table 6.1.

Table 6.2 shows the fault coverage, the average number of back-
tracks, and the total time required to generate complete sets of tests for
nine of the ISCAS circuits using the implemented version of the D-algorithm.
Tables 6.3 and 6.4 show the same information for the PODEM and FAN im-
plementations xespectively. All results were obtained with a backtrack lirnit
of 10 and without fault simulation during test generation to find any other
faults detected by a test for a particular fault. Fault simulation was used
later, however, to verify that the tests produced did indeed detect the faults

for which they were generated.

The fault coverages shown are the fault coverages for collapsed sets
of all faults. Collapsing was performed using equivalence relationships only,
and typically resulted in sets of target faults half the size of the original sets
of all possible stuck-at faults. The numbers in parentheses beside the fault
coverage figures are the percentages of faults in the collapsed sets which were
determined to be redundant. The fault coverage figures do not include these

redundant faults.
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Table 6.1: Characteristics Of The ISCAS Circuils

Circuit || Total | Total | Input | Output | Average
Name H Lines | Gates | Lines | Jines | Fanout
c432 432 | 160 36 7 2.65
c499 || 499 202 41 32 4.34
c880 || 880 | 383 | 60 26 3.50
€1355 || 1355 | 546 41 32 2.97
c1908 || 1908 | 880 | 33 25 2.58
c2670 || 2670 | 1193 | 233 140 2.74
c3540 || 3540 | 1669 50 22 3.15
¢5315 || 5315 | 2307 | 178 123 3.51
¢6288 || 6288 | 2406 | 32 32 2.64
c7552 || 7552 | 3512 | 207 108 2.95

Table 6.2: Results For Implementation Of D-Algorithm

Average
ISCAS || Fault Back- | Time
Circuit || Coverage | tracks | (sec.)

c432 [ 98.3(0.2) | 0.438 | 39

c499 || 94.5(1.1) | 0.937 | 85

<880 100 0.048 | 42.3
c1355 || 40.4(0.5) | 7.604 | 434
c1908 || 93.3(0.4) | 0.872 | 561
2670 || 88.3(3.0) | 1.446 | 432
c3540 || 89.8(3.7) | 1.222 | 1055
c5315 || 94.8(1.1) | 0.802 | 910
c7552 || 81.9(0.7) | 2.540 | 2892
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Table 6.3: Results For Implementation Of PODEM

Average
ISCAS Fault Back- | Time
Circuit [| Coverage | tracks | (sec.)
432 || 98.5(0) | 1.418 | 28
<499 || 95.8(0) | 1.241 | 85
c880 100 0.007 33
c1355 || 91.4(0) | 1.135 | 399
c1908 || 98.9(0.3) | 0.123 | 261
"c2670 || 91.7(0.9) | 1.092 | 365
<3540 || 89.6(1.0) | 1.306 | 1160
c5315 || 96.8(0.8) | 0513 | 873
o7552 || 80.8(0.7) | 1.682 | 3574

Table 6.4: Results For Implementation Of FAN

Average
ISCAS || Fault Back- | Time
Circuit || Coverage | tracks | (sec.)

432 || 98.7(0.2) | 0.447 | 171
499 || 79.2(1.1) | 3.0714 | 284
<880 100 0.781 | 133
c1355 || 49.3(0.5) | 7.187 | 797
c1908 || 88.5(0.4) | 2.122 | 1778
<2670 || 89.3(3.5) | 1.285 | 1306
c3540 || 87.2(3.7) | 1.806 | 3446
c5315 || 97.5(1.1) | 0.712 | 2069
c7552 || 86.3(0.8) | 2.936 | 9659
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The average number of backiracks is calculated by dividing the total
number of backtracks by the number of faults in the collapsed set.

The time recorded in the tables is the time actually spen? in the
test generation routines, and does not include the time required for prepro-
cessing (i.c., the time required to build the data structures, calculate the

controllabilitics and observabilities, etc.).

With a backirack limit of 10, the results show that the PODEM im-
plementation often outperformed the other two implementations in all three
categorics. What the results do not show is the effect radundant faults have
on these measurements when the backtrack limit is raised in an effort to im-
prove fault coverage. The FAN and D-algorithm implementations frequently
determine that faulls are redundant in fewer backtracks than the PODEM
implementation, suggesting that their relative performances may improve for

large circuits when the backtrack limit is high.

The same statistics for a previous implementation of PODEM [25)
considered reasonably efficient is shown in Table 6.5. Coriparing this data
with the results in Table 6.3 suggests that the new implementation is at least
as efficient as the previous one. The greatest differences occur in the aver-
age number of backtracks, and are most likely due to the different guidance

heuristics used.

Software profiling, used to gather run-time statistics on the program
functions, also yielded some interesting results. The implemented version of
the D-algorithm typically spends most of ils time in the forward implication,
backward implication and justification operations. The PODEM implemen-
tation typically spends most of its time in the forward implication, back-

trace and the main control operations. The implementation of FAN typically
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Table 6.5: Results For Previous Implementation Of PODEM

Average
ISCAS || Fault Back- | Time
Circuit || Coverage | tracks | (scc.)

432 || 93.3(0) | 0.971 | 30
c499 || 97.6(0) | 0.325 | 83
c1355 || 96.8(0) | 0.881 | 703
<1908 H99.1(o.3) 0.141 | 304
<2670 || 95.6(0.9) | 0.471 | 427
c3540 | 90.2(1.0) | 1.120 | 1205
5315 || 98.2(0.8) | 0.196 | 1161
c7552 || 97.1(0.7) | 0.429 | 3365

spends the bulk of its time in the forward implication, multiple backtrace and

various linked list operations.




Chapter 7

Conclusions

A library of modular computer routines for ATPG was developed
and used to implement the three best-known ATPG algorithms—the (modi-
fied) D-algorithm, PODEM and FAN. These implementations efficiently gen-
erate tests for digital circuils, and can be used to reduce the escalating costs

assaciated with the testing of digital integrated circuits.

In addition, this ibrary approach facilitates the implementation of
new ATPG algorithms, and also provides a favorable environment in which
the relative performances of ATPG algorithms can be compared. New ATPG
algorithms can be implemented by combining the existing routines in new
and different ways, adding new routines, substituting new routines for ex-
isting ones, etc. Hybrid test generation programs which switch from one
implementation to another during execution can also be developed and opti-

mized.

In the library environment, the sharing of common functions tends
to nullify any differences in performance due {o implementation, thereby ac-
centuating differences in the efficiencies of the underlying algorithms. For
example, all three of the algorithms implemented spend most of their time
in the forward implication routine. Thus their relative performances could
be greatly affected by the efficiencies of their forward implication operations.

By sharing a common forward implication routine, however, any differences
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in their 1elative performances are more likely to result from differences in the

efficiencies of tnsir hasic algorithms.

The hybrid test gencration program approach warrants further study.
For example, if the fault coverage provided by the PODEM implementation
with a Jow backirack limit is not sufficient, it may be better to attack the
aborted faults with the FAN or modified D-aigorithm implementation rather
than simply trying again with a highez backirack limit. Through further ex-
perimentation and analysis, the best overall strategy for combining the three

implementations to form one test generation program can be determined.

The main drawback to the library approach is that it is restrictive—
the data structures are predetermined and cannot be optimized for any single
implementation. Any small impact on the performance of a single implemen-
lation is, however, greatly outweighed by the advantages of this approach,

especially in the case of a hybrid test gencration program.

In closing, it is hard to imnagine an environment more conducive to
the development of a library of modular routines for ATPG than the one
provided by the C programming language and the UNIX operating system.
Because C is terse and deals with the same types of objects that computers
do (e.g., characters, numbers and addresses), compilers can ecasily be devel-
oped which produce efficient machine language programs. The UNIX utilities
enhance programmer productivity by providing the basic functions needed in

a software development environment.
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